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Abstract
Here we demonstrate a theorem concerning the general structure of the
integrating factor for first-order ordinary differential equations whose solutions
contain Liouvillian functions. This result assures the generality of a method
presented in a forthcoming paper extending the usual Prelle–Singer approach.

PACS number: 02.30.Hq

1. Introduction

When talking about solving a differential equation many ideas come to mind. For a first-order
ordinary differential equation (FOODE), finding the solution can be equated to determining
an integrating factor.

A remarkable method for finding such factors was developed, in 1983, by Prelle and
Singer [1]. Their method is based on the knowledge of the general structure of the integrating
factor for FOODEs of the type dy/dx = M(x, y)/N(x, y), with M and N polynomials in their
arguments, which present a solution that can be written in terms of elementary functions3. Their
approach is very attractive due to the fact that it is non-classificatory and of a semi-decision
nature. Therefore, it has motivated many extensions of the original idea [3–6].

In this paper, we take a further step in establishing the general structure of the integrating
factor for FOODEs of type dy/dx = M(x, y)/N(x, y), with M and N polynomials
in their arguments, which present a solution that can be written in terms of Liouvillian
functions4 (LFOODEs). This result can be used to assure the applicability of the method

3 For a formal definition of elementary function, see [2].
4 An extension of elementary functions, see [2].
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presented in [7], which is an extension to the Prelle–Singer (PS) procedure allowing for the
solution of some LFOODEs missed by the usual PS procedure.

The paper is organized as follows: in section 2.1, we summarize some earlier results
concerning the structure of the integrating factors for some classes of LFOODEs; next, in
section 2.2, we present a theorem confirming the above-mentioned conjecture and then present
our conclusions.

2. The structure of the integrating factor for LFOODEs

2.1. First results

A seminal result on dealing with LFOODEs was obtained by Prelle and Singer in 1983 [1].
They have demonstrated that, for an LFOODE,

dy

dx
= M(x, y)

N(x, y)
(1)

where M and N are polynomials in (x, y) with coefficients in the complex field C, if its solution
can be written in terms of elementary functions, then there exists an integrating factor of the
form R = ∏

i f
ni

i where fi are irreducible polynomials and ni are non-zero rational numbers.
Using this result in (1), we have

D[R]

R
=

∑
i

niD[fi]

fi

= −(∂xN + ∂yM) (2)

where D ≡ N∂x + M∂y .
From (2), plus the fact that M and N are polynomials, we conclude that D[R]/R is a

polynomial and that fi |D[fi] [1]. We now have a criterion for choosing the possible fi (build
all the possible divisors of D[fi] up to a certain degree) and, if we manage to solve (2), thereby
finding ni , we know the integrating factor for the FOODE and the problem is reduced to a
quadrature.

In [7, 8], a next step was taken: it was shown that, for an LFOODE of type (1), the
integrating factor is of the form

R = er0(x,y)
n∏

i=1

pi(x, y)ci (3)

where r0 is a rational function of (x, y), the pi are irreducible polynomials in (x, y) and the ci

are constants.
So, it is straightforward to see that an LFOODE of the type (1), which presents an

integrating factor with r0 �= constant, is beyond the scope of the PS-method.

2.2. A theorem

Theorem 1. If we have an LFOODE of the form dy/dx = M(x, y)/N(x, y), where M and
N are polynomials in (x, y), with integrating factor R given by R = er0(x,y)

∏n
i=1 pi(x, y)ci ,

where r0 is a rational function of (x, y), pi are irreducible polynomials in (x, y) and ci are
constants, then D[r0] is a polynomial in (x, y), where D ≡ N∂x + M∂y .

Proof. Applying (3) to equation (2), we get

D[r0] +
∑

i

ciD[pi]

pi

= −(∂xN + ∂yM). (4)
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Since r0 is a rational function, we can write (4) as

D

[
P(x, y)

Q(x, y)

]
+

∑
i

ci

D[pi]

pi

= −(∂xN + ∂yM) (5)

where P and Q are polynomials in (x, y) with no common factors. Writing
∑

i ci
D[pi ]

pi
as a

single quotient, we get

D

[
P

Q

]
+

∑
j cj (

∏
i,i �=j pi)D[pj ]∏

i pi

= − (
∂xN + ∂yM

)
. (6)

Expanding D
[

P
Q

]
and multiplying both sides of (6) by

∏
i pi , we can write

∏
i

pi

Q D[P ] − P D[Q]

Q2
+

∑
j

cj

( ∏
i,i �=j

pi

)
D[pj ] = − (

∂xN + ∂yM
) ( ∏

i

pi

)
. (7)

Since D is a linear differential operator, with polynomial coefficients, and the pi are
polynomials, the D[pi] are also polynomial. Therefore,

∑
j cj (

∏
i,i �=j pi)D[pj ] is polynomial

and so is the right-hand side of (7). From this, we can conclude that the term
∏

i

pi

Q D[P ] − P D[Q]

Q2
(8)

is polynomial.
Noting that Q D[P ] − P D[Q] is polynomial and the pi are independent irreducible

polynomials,
∏

i pi cannot cancel Q2 out (i.e.
∏

i pi/Q
2 cannot be polynomial). So, we have

two possible situations:

• ∏
i pi and Q have no common factors;

• ∏
i pi and Q have common factors.

(1) First situation. Since
∏

i pi does not have any common factor with Q (so has no common
factor with Q2 either) and

∏
i pi

Q D[P ]−P D[Q]
Q2 is polynomial, we must have that

D[r0] = Q D[P ] − P D[Q]

Q2
(9)

is itself a polynomial, as we wanted to demonstrate.

(2) Second situation. This case is a little more involved. First, let us consider that, in
∏

i pi ,
i runs from 1 to n. With that in mind, let us establish some notation.

Representing the common factor of Q and
∏n

i=1 pi as

I =
nI∏
i=1

pi (10)

and the terms in
∏n

i=1 pi not present in Q as

π =
n∏

i=nI +1

pi (11)

we can write
n∏

i=1

pi = π I. (12)
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Recalling that Q is polynomial, it can be written as a product of powers of irreducible
polynomials. Since, by assumption, Q has a common factor I with

∏n
i=1 pi , we are going to

write

Q = θ I =
( nθ∏

i=1

q
mi

i

) ( nI∏
i=1

pi

)
(13)

where qi are irreducible polynomials and mi are positive integers5.
Re-writing (8) with this notation and expanding, we obtain

∏
i

pi

Q D[P ] − P D[Q]

Q2
= (π I)

Q D[P ] − P D[Q]

Q θ I

= π
Q D[P ] − P D[Q]

Q θ
= π

D[P ]

θ
− π P

D[Q]

Q θ
. (14)

Remembering that the term (14) is a polynomial, if we multiply it by θ (itself a polynomial,
see (13)), we get that

π D[P ] − π P
D[Q]

Q
(15)

is a polynomial. Therefore, since π D[P ] is a polynomial, we finally may conclude that

π P
D[Q]

Q
(16)

is a polynomial. From the fact that neither π nor P have factors in common with Q, we can
assure that D[Q]/Q is a polynomial. Using this fact and denoting

Q =
nq∏
i=1

Q
ki

i (= θ I) (17)

where the Qi are irreducible polynomials and the ki are integers, we have that

D[Q]

Q
= D

[ ∏nq

i=1 Q
ki

i

]
∏nq

i=1 Q
ki

i

=
nq∑
i=1

ki

D[Qi]

Qi

. (18)

If we multiply (18) by
∏nq

j=2 Qj , we get

( nq∏
j=2

Qj

)
D[Q]

Q
= k1

( nq∏
j=2

Qj

)
D[Q1]

Q1
+

nq∑
i=2

ki

( nq∏
j=2,j �=i

Qj

)
D[Qi]. (19)

Since the left-hand side of (19) and the second term on the right-hand side of (19) are
polynomials, we may conclude that k1

(∏nq

j=2 Qj

)
D[Q1]/Q1 is also a polynomial. Considering

that the Q are independent (by construction), the product
∏nq

j=2 Qj cannot cancel Q1. Therefore,
we can conclude that Q1|D[Q1]. In an analogous way, we have that Qi |D[Qi], i = 2 · · · nq .
Finally, looking at (17) (noting that the Q are just another name for the q and p which build
up Q), we can say that qi |D[qi] , i = 1 . . . nθ and pi |D[pi] , i = 1 . . . nI .

Writing equation (4) as

D[r0] +
nI∑
i=1

ciD[pi]

pi

+
n∑

i=nI +1

ciD[pi]

pi

= −(∂xN + ∂yM) (20)

5 Note that some of the qi may be the same irreducible polynomials that appear in I.
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and, since pi |D[pi], i = 1 . . . nI , we have that
∑nI

i=1
ciD[pi ]

pi
is a polynomial. Therefore

D[r0] +
n∑

i=nI +1

ciD[pi]

pi

(21)

is a polynomial. We can write (21) as

D

[
P

Q

]
+

∑n
j=nI +1 cj

( ∏n
i=nI +1,i �=j pi

)
D[pj ]∏n

i=nI +1 pi

. (22)

Multiplying (22) by
∏n

i=nI +1 pi , we get

n∏
i=nI +1

pi

Q D[P ] − P D[Q]

Q2
+

n∑
j=nI +1

cj

( n∏
i=nI +1,i �=j

pi

)
D[pj ] (23)

which is also a polynomial. Since
∑

j cj (
∏

i,i �=j pi)D[pj ] is itself a polynomial, we can safely
say that

n∏
i=nI +1

pi

Q D[P ] − P D[Q]

Q2
(24)

is a polynomial. Since
∏n

i=nI +1 pi has no common factor with Q, we finally conclude that
Q D[P ]−P D[Q]

Q2 = D[r0] is polynomial, as we wanted to demonstrate. �

Corollary 1. If R = er0(x,y)
∏n

i=1 pi(x, y)ci (where r0 is a rational function of (x, y), the pi

are irreducible polynomials in (x, y) and the ci are constants) is the integrating factor for the
LFOODE dy/dx = M/N , where M , N are polynomials in (x, y), then pi |D[pi].

The result above is a direct consequence of equation (4) and the above theorem.

3. Conclusion

The result presented here is a step forward in the determination of the general form for the
integrating factor for an LFOODE of the type given by equation (1). Now one can say that the
integrating factor for such an LFOODE can be put in the form

R = er0(x,y)
n∏

i=1

pi(x, y)ci (25)

where D[r0] is a rational function of (x, y), the pi are eigenpolynomials of the D operator and
the ci are constants.

This result can be used to assure the applicability of the method presented in [7], where
we have dealt with a restricted class of LFOODEs of the type (1).
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